Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 45(2): 118-124, Feb. 2012. ilus, tab
Article in English | LILACS | ID: lil-614572

ABSTRACT

Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1 percent, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78 percent. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.


Subject(s)
Animals , Female , Albizzia/chemistry , Coleoptera/drug effects , Seed Storage Proteins/toxicity , Seeds/chemistry , Larva/drug effects
2.
Braz. j. med. biol. res ; 39(11): 1435-1444, Nov. 2006. ilus, graf
Article in English | LILACS | ID: lil-437826

ABSTRACT

Evidence based on immunological cross-reactivity and anti-diabetic properties has suggested the presence of insulin-like peptides in plants. The objective of the present study was to investigate the presence of insulin-like proteins in the leaves of Bauhinia variegata ("pata-de-vaca", "mororó"), a plant widely utilized in popular medicine as an anti-diabetic agent. We show that an insulin-like protein was present in the leaves of this plant. A chloroplast protein with a molecular mass similar to that of bovine insulin was extracted from 2-mm thick 15 percent SDS-PAGE gels and fractionated with a 2 x 24 cm Sephadex G-50 column. The activity of this insulin-like protein (0.48 mg/mL) on serum glucose levels of four-week-old Swiss albino (CF1) diabetic mice was similar to that of commercial swine insulin used as control. Further characterization of this molecule by reverse-phase hydrophobic HPLC chromatographic analysis as well as its antidiabetic activity on alloxan-induced mice showed that it has insulin-like properties. Immunolocalization of the insulin-like protein in the leaves of B. variegata was performed by transmission electron microscopy using a polyclonal anti-insulin human antibody. Localization in the leaf blades revealed that the insulin-like protein is present mainly in chloroplasts where it is also found associated with crystals which may be calcium oxalate. The presence of an insulin-like protein in chloroplasts may indicate its involvement in carbohydrate metabolism. This finding has strengthened our previous results and suggests that insulin-signaling pathways have been conserved through evolution.


Subject(s)
Animals , Cattle , Mice , Bauhinia/chemistry , Chloroplasts/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/isolation & purification , Insulin-Like Growth Factor Binding Proteins/isolation & purification , Plant Leaves/chemistry , Autoantibodies/blood , Bauhinia/cytology , Chromatography, High Pressure Liquid , Chloroplasts/ultrastructure , Electrophoresis, Polyacrylamide Gel , Hypoglycemic Agents/therapeutic use , Immunoglobulin G/blood , Insulin-Like Growth Factor Binding Proteins/therapeutic use , Microscopy, Electron, Transmission , Plant Leaves/cytology
3.
Braz. j. med. biol. res ; 36(9): 1167-1173, Sept. 2003. ilus, tab, graf
Article in English | LILACS | ID: lil-342857

ABSTRACT

Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata) genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/æg of protein) of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit


Subject(s)
Animals , Cattle , Insulin , Plant Proteins , Plants , Sequence Homology, Amino Acid , Blotting, Western , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Insulin , Molecular Weight , Plant Proteins , Plants
4.
Braz. j. med. biol. res ; 35(3): 297-303, Mar. 2002. ilus, tab
Article in English | LILACS | ID: lil-304679

ABSTRACT

We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution


Subject(s)
Animals , Cattle , Fungi , Insulin , Plant Proteins , Proto-Oncogene Proteins c-bcl-2 , Rhodophyta , Bacterial Proteins , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Fungi , Molecular Weight , Plant Proteins , Rhodophyta
5.
Braz. j. med. biol. res ; 33(2): 191-8, Feb. 2000.
Article in English | LILACS | ID: lil-252294

ABSTRACT

The presence of phaseolin (a vicilin-like 7S storage globulin) peptides in the seed coat of the legume Phaseolus lunatus L. (lima bean) was demonstrated by N-terminal amino acid sequencing. Utilizing an artificial seed system assay we showed that phaseolin, isolated from both cotyledon and testa tissues of P. lunatus, is detrimental to the nonhost bruchid Callosobruchus maculatus (F) (cowpea weevil) with ED50 of 1.7 and 3.5 percent, respectively. The level of phaseolin in the seed coat (16.7 percent) was found to be sufficient to deter larval development of this bruchid. The expression of a C. maculatus-detrimental protein in the testa of nonhost seeds suggests that the protein may have played a significant role in the evolutionary adaptation of bruchids to legume seeds


Subject(s)
Animals , Coleoptera/physiology , Fabaceae/chemistry , Plant Proteins/isolation & purification , Seeds/chemistry , Amino Acid Sequence , Plant Diseases/parasitology , Plant Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL